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a b s t r a c t 

Pathogen evolution is an imminent threat to global health that has warranted, and duly received, con- 

siderable attention within the medical, microbiological and modelling communities. Outbreaks of new 

pathogens are often ignited by the emergence and transmission of mutant variants descended from wild- 

type strains circulating in the community. In this work we investigate the stochastic dynamics of the 

emergence of a novel disease strain, introduced into a population in which it must compete with an exist- 

ing endemic strain. In analogy with past work on single-strain epidemic outbreaks, we apply a branching 

process approximation to calculate the probability that the new strain becomes established. As expected, 

a critical determinant of the survival prospects of any invading strain is the magnitude of its reproduction 

number relative to that of the background endemic strain. Whilst in most circumstances this ratio must 

exceed unity in order for invasion to be viable, we show that differential control scenarios can lead to 

less-fit novel strains invading populations hosting a fitter endemic one. This analysis and the accompa- 

nying findings will inform our understanding of the mechanisms that have led to past instances of suc- 

cessful strain invasion, and provide valuable lessons for thwarting future drug-resistant strain incursions. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Anti-microbial drug resistance (AMR) currently presents

ne of the most significant challenges to public health world-

ide ( Levy and Marshall, 2004 ). The incidence of cases infected

ith non-wild-type variants of pathogenic diseases continues

o rise with endemic levels already witnessed in several re-

ions ( McKenna, 2013; Laxminarayan et al., 2013 ). Exacerbating

he problem is the growing misuse and overuse of antimicrobial

gents which, rather than suppressing pathogen strain diversity,

ften acts to accelerate the spread and diversification of mutant

ariants ( Barbosa and Levy, 20 0 0; Neu, 1992 ). More broadly, the

mergence of new pathogen strains that have evolved to escape

atural immunity within a population pose substantial risks to

ublic health. Alarmingly, in many settings, direct transmission

f these mutant pathogens is believed to have become the pri-

ary source of incident cases ( Luciani et al., 2009; others, 2018 )

uggesting that intervention strategies targeting the transmission

nd treatment of wild-type strains alone will likely fail. Even with
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ecent increases in funding ( Simpkin et al., 2017 ), the ongoing

rms race between pathogen evolution and the development of

ovel antibiotics is still being won by the former. Consequently, we

re now faced with a rapidly diminishing arsenal of effective ther-

pies — one which may soon prove inadequate ( Hancock, 2007 ). 

The evolution of infectious pathogens and the emergence

f mutant variants are fundamentally driven by random pro-

esses — both at the within-host and population levels. Not only

o mutant strains arise as a result of random microbiological

rocesses ( Alekshun and Levy, 2007 ), but phenotypically distinct

ariants initially appear in small numbers of hosts and must there-

ore escape a treacherous stochastic regime (i.e., avoid extinction)

n order to establish themselves within the community. Often fur-

hering this challenge is the presence of a resident endemic (pos-

ibly ancestral) strain that deprives the newly-emergent mutant of

usceptible hosts (e.g., through cross-immunity). In spite of these

hallenges, countless mutant pathogens — often exhibiting varying

evels of drug-resistance — have flourished and been able to firmly

ntrench themselves among host populations ( Chang et al., 2015 ). 

Previous modelling investigations of pathogen ecology and di-

ersity have often assumed that the multi-strain dynamics are

ell established ( Blanquart et al., 2016; Cobey et al., 2017; Col-

jn et al., 2010; Lehtinan et al., 2017; Meehan et al., 2018 ); whilst

hose studies that have specifically modelled the emergence of

https://doi.org/10.1016/j.jtbi.2019.110109
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2 The Negative Binomial distribution arises as the composition of the Gamma dis- 

tribution for individual reproductive potential ν , p ν ( x ), and the Poisson distribution 

for secondary cases Z , given ν , p Z ( z | ν), i.e., 

p Z (z) = 

∫ ∞ 

p Z (z| ν = x ) p ν (x ) dx. (2) 
mutant variants, have predominantly done so deterministically (see

e.g., ( Cohen and Murray, 2004; Blower and Chou, 2004; Tanaka and

Francis, 2006; D’Agata et al., 2009 )). The goal of this paper is to

analyze the early-time dynamics of novel strain emergence in a

stochastic setting whilst accounting for the background population

dynamics associated with endemic infection. In particular, we in-

vestigate the conditions under which invasion by a novel strain is

possible and calculate the probability of this event occurring, de-

pending on the relative fitness (i.e., reproductive capacity) of the

two strains, and the relevant characteristics of the host popula-

tion (i.e., the heterogeneity in individual reproductive capacity). We

then analyze the effects of control strategies and timing on the

emergence of novel strains and discuss the implications of differ-

ential control efficacy when the invading strain boasts some level

of resistance to treatment. The results of this investigation will ex-

tend analogous findings in single-strain settings and elucidate the

consequences of different control mechanisms/timings in multi-

strain systems — particularly the impact of differential control.

Moreover the analytical framework that we develop will provide

a flexible and robust theoretical basis for future modelling work. 

2. Background: Invasion in infection-naïve populations 

Before turning to the multi-strain scenario, we first review the

analogous computation in an infection-naïve setting — for which

several classical results are available ( Griffiths, 1973; Britton, 2010;

Diekmann et al., 2012 ): the probability of an epidemic outbreak

when an infectious disease is introduced into an entirely suscepti-

ble host population. 

To begin, when the susceptible population is sufficiently large

and well mixed, it is common to approximate early epidemic be-

havior by a branching process ( Griffiths, 1973; Britton, 2010; Diek-

mann et al., 2012 ), as infected individuals are likely to have con-

tacts only with susceptible individuals. In this case the depletion

of susceptible individuals due to infection is negligible such that

(in an infection-naïve population) the susceptible fraction remains

approximately equal to one. Thus, to determine the epidemic tra-

jectory we need only track the number of infected individuals and

the rate at which they produce secondary cases, or offspring. This

framework allows for tractable computations of the probability an

outbreak becomes extinct in its early stages, using branching pro-

cess theory. 

When our goal is solely to determine the probability of extinc-

tion or establishment of the outbreak, we need only consider the

infection process in terms of discrete, non-overlapping generations.

If the duration of infectiousness is constant, the number of sec-

ondary cases, or offspring, Z , generated by each member of the in-

fectious population during their infectious lifetime (i.e., one gener-

ation) is a Poisson random variable with rate parameter R 0 , where

R 0 is the basic reproduction number: Z ~ Poisson( R 0 ). In this case,

the probability that an epidemic outbreak, that begins with a sin-

gle infectious individual, goes extinct, q , is given by the smallest

root of the equation (see e.g., ( Diekmann et al., 2012 )): 

q = e −R 0 (1 −q ) . (1)

For R 0 ≤ 1 the unique root of Eq. (1) is q = 1 and extinction is

guaranteed. For R 0 > 1 a second solution q < 1 emerges and an

epidemic outbreak is possible. This outcome becomes increasingly

likely as R 0 increases. 

A significant recent contribution to this theory is the work by

Lloyd-Smith et al. ( Lloyd-Smith et al., 2005 ) in which the authors

highlighted the importance of heterogeneity in individual infec-

tiousness among members of the host population and its role in

determining the fate of an infectious disease outbreak. By analyz-

ing secondary case counts from several historical infectious dis-

ease outbreaks, including the 2003 outbreak of severe acute res-
iratory syndrome (SARS) in Singapore, the authors demonstrated

hat in order to accurately reconstruct observed epidemics, models

ust account for individual heterogeneity in reproductive poten-

ial. In particular, they found that observed secondary case counts

ollow highly skewed distributions where outbreaks are driven by

 small subset of so-called ‘super-spreaders’: individuals that gen-

rate a disproportionately large number of secondary cases, and

hat the large majority of infected individuals lead to no, or few,

econdary infections. As a consequence of this disparity, the prob-

bility of extinction increases and epidemics become rarer (but

ore explosive), as heterogeneity increases. Importantly, their find-

ngs show that previous analyses that rely solely on population

ean parameters — such as the basic reproduction number R 0 — to

odel outbreak dynamics inadequately capture the true stochas-

ic nature of disease spread, because the prospects of an epidemic

utbreak depend critically on the distribution of infection poten-

ial within the host population. This work has since been extended

n Yates et al. (2006) using a multi-type branching process frame-

ork to incorporate other forms of heterogeneity including suscep-

ibility and assortative mixing leading to similar conclusions. 

To model the infectious cohort as a heterogeneous mixture of

nfected individuals, the authors in Lloyd-Smith et al. (2005) as-

igned each member of the infectious population a random repro-

uctive capacity ν drawn from a Gamma probability distribution

ith population mean R 0 = E (ν) and dispersion (i.e. shape) pa-

ameter k . As such, the probability density function for ν was de-

ned as 

p ν (x ) = 

1 

�(k ) 

k 

R 0 

(
kx 

R 0 

)k −1 

e −kx/R 0 . 

ere, smaller values of k indicate higher levels of heterogene-

ty in the infected population and a greater propensity for super-

preading behaviour. Therefore, whilst this framework assumes a

ell-mixed host population whereby any two individuals can come

nto contact, this mixing is heterogeneous, in that some individuals

ill make more contacts throughout their infectious lifetime. 

The variation in reproductive capacity can be interpreted as

epresenting some combination of, for example, variation in du-

ation of infectiousness, differences in social contacts or behaviour

etween individuals, or higher transmissibility among children as

ompared to adults. Being able to represent this heterogeneity

ithout needing to explicitly construct social contact networks or

ulti-class processes provides a flexible and tractable means of ex-

loring a range of scenarios. More importantly, the Gamma distri-

ution specifically, in conjunction with the branching process ap-

roximation, was shown in Lloyd-Smith et al. (2005) to accurately

eproduce the secondary case counts of several observed epidemic

utbreaks. For these reasons we adopt this modelling approach in

ur investigation. 

When the reproductive potential of each infectious indi-

idual, ν , is Gamma distributed, the total number of offspring

enerated by each infectious cohort, Z , follows a Negative Bi-

omial distribution with parameters p and k: Z ~ NegBin( p, k ),

ith p = (1 + 

R 0 
k 

) −1 . 2 The extinction Eq. (1) generalizes to

 Lloyd-Smith et al., 2005 ) 

 = 

(
1 + 

R 0 

k 
(1 − q ) 

)−k 

. (3)

n the limit k → ∞ , that is, for a homogeneous population

ith ν = R 0 , this equation reduces to the familiar form (1) , and
0 
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Fig. 1. Probability of extinction, q , for a new invading strain entering an endemi- 

cally infected population as a function of the effective reproduction number R i 
eff 

= 

R i 0 /R r 0 for varying dispersion parameter k . 

Fig. 2. Comparison of the probability of extinction, q , for a new invading strain en- 

tering an endemically infected population under a uniform partial (solid) and polar- 

ized (dot-dashed) control policy as a function of the level of control c and varying 

dispersion parameter k . Here, we have set R i 0 = 5 and R r 0 = 5 / 3 which gives a criti- 

cal control level c crit = 1 − R r 0 /R i 0 = 2 / 3 . In this figure we have assumed that control 

has been implemented coincident with the emergence of the invading strain i and 

that it is equally effective against both strains. 
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e  
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s  
or k = 1 (i.e., the typical continuous-time Markov chain with

xponentially-distributed infectious periods and inter-arrival times

etween infection events), we have the simple expression 

 = 

1 

R 0 

. 

Once again, for R 0 < 1 the smallest root of Eq. (3) is q = 1 and

xtinction is guaranteed. For R 0 > 1 the probability of extinction

ecreases monotonically (i.e., an epidemic becomes more likely)

oth with increasing R 0 and k . Therefore, as highlighted in Lloyd-

mith et al. (2005) , higher levels of host heterogeneity (i.e., smaller

 ) lead to a higher probability of epidemic extinction. 

. Invasion by a novel strain against an endemic background 

Now we consider the multi-strain scenario, in which a new

nvading pathogen strain i is introduced into a population that

lready hosts a resident endemic strain r . We apply a branching

rocess approximation to calculate the probability that strain i

stablishes itself within the community, i.e., avoids extinction, but

ote that the approximation used must necessarily account for the

mpact of the resident strain on the capacity of the invader to in-

ect individuals. We note that Leventhal et al. (2015) take a similar

ranching process-based approach, but consider network structure

xplicitly, rather than allowing contact between any pairs of indi-

iduals as is the case here, i.e., we consider a well-mixed popula-

ion. For simplicity, we assume that the background infection is in

ome quasi-stationary distribution ( sensu Bartlett (1957) ). We also

ssume that the population is large, so that given the presence of

he resident strain r , there remain sufficient susceptible individuals

hat the introduction of the invading strain i can be approximated

y a branching process, and that early in the outbreak of i , the

raction of the population that are susceptible does not change

ubstantially. Analysis is possible when these assumptions are bro-

en, with results similar to those presented here; however these

cenarios are often substantially more complex, and do not cover

he full range of intervention scenarios considered here. For exam-

le, Hartfield and Alizon (2014) consider a scenario in which the

esident strain is not in equilibrium, resulting in a more complex

ranching process approximation, and Humplik et al. (2014) eval-

ate establishment probability in a simple SIS model, but with

nite N explicitly without a branching process approximation.

ore broadly, we emphasise that invasion of a second disease

gainst an endemic strain in a fully-mixed population is a setting

hat has been considered several times previously, with early

esults in deterministic systems producing similar outcomes to

hose presented here (see e.g., Levin and Pimentel, 1981 ). 

One difference between this scenario and the one considered in

he previous section is that, assuming perfect cross-immunity, the

resence of a resident strain r diminishes the pool of available sus-

eptibles presented to the invading strain i , thus impeding its epi-

emic potential. Specifically, in our multi-strain scenario, infectious

ndividuals come into contact with (other) individuals according to

 Poisson process in the normal way, but rather than those individ-

als necessarily being susceptible (as in the naïve case), they are

nly susceptible with probability (approximately) S̄ / (N − 1) , where
¯
 is the mean endemic susceptible population, i.e., S̄ = N/R r 0 , and N

s the population size. (For convenience, we note that N ≈ (N − 1)

hen N is large, and thus discard the −1 hereafter. Thus, S̄ /N is

he susceptible fraction of the population.) Consequently, given the

resence of the endemic strain, we find that the effective repro-

uction number, R i 
eff 

, of the invading strain i at the time of its in-

roduction is rescaled accordingly: 

 

i 
0 → R 

i 
eff = R 

i 
0 

S̄ 

N 

= 

R 

i 
0 

R 

r 
. (4)
0 
 

i 
0 

and R r 0 are the mean basic reproduction numbers of the in-

ader and resident strain, respectively, as measured in the absence

f the other. Note that this does not rely on a specific formulation

round other disease dynamics, e.g., the presence of a recovered

lass and how waning immunity or replenishment of susceptibles

ccurs. To calculate the extinction probability of the invading strain

n this case we need only replace R 0 in Eq. (3) with R i 
eff 

= R i 
0 
/R r 0 ,

nd solve numerically. The results are shown in Fig. 1 where we

ffectively reproduce Fig. 2 b) of Lloyd-Smith et al. (2005) with the

 -axis rescaled from R 0 → R i 
eff 

. Accordingly we now find that the

pidemic threshold condition becomes R i 
eff 

> 1 such that extinction

f the invading strain is guaranteed for R i 
0 

< R r 0 . Once again, we ob-

erve that the extinction probability decreases monotonically with
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a  
increasing R i 
eff 

and, as in Lloyd-Smith et al. (2005) , that increasing

individual heterogeneity (decreasing k ) favours extinction. 

To verify the utility of this branching process approximation for

strain invasion against an endemic background, and test the condi-

tions under which it can be applied with confidence, we performed

a simulation study. Full details appear in Appendix A. Exact simu-

lations of a SIRS-type model with two strains and heterogeneity in

individual reproductive capacity identical to that considered here

were produced across a range of population sizes and parameter

choices. The simulation results demonstrated that the branching

process approximation was accurate for sufficiently high popula-

tion sizes (e.g., N ≥ 500), and that this accuracy was robust to

choices of k , R r 
0 
, and R i 

0 
. 

4. Probability of strain invasion under control scenarios 

We now consider the impact of control on the invasion (or

extinction) probability of a new strain entering an endemic

population focussing separately on several key factors: first, the

mechanism by which control is implemented and its effect on

the distribution of reproductive potentials ν among members of

the infected population; second, the timing of the introduction of

control and the implications for the background population dy-

namics; and, finally, the relative efficacy of intervention measures

when applied to the resident strain r and the invading strain i ,

which we anticipate enjoys some level of resistance to control

(e.g., drug resistance). 

4.1. Control policy 

First, we consider two separate types of control measures and

their impact (following Lloyd-Smith et al., 2005 ): 

1. Uniform partial (population-wide) control where each individ-

ual in the population experiences a uniform reduction in their

transmission potential ν . As a result the reproductive potential

ν of every member of the population is reduced by a factor

1 − c where c is the level of control: νpop = (1 − c) ν . 

2. Random, polarized control where a fixed proportion c of the in-

fected population is neutralized completely ( ν ind = 0 ) and the

remaining (1 − c) individuals are unaffected ( ν ind = ν). 

From the description above we see that for the same level of

control c , the mean effective reproduction number in the pres-

ence of control R i 
eff ,c 

= (1 − c) R i 
eff 

is the same in both cases. Im-

portantly however, in general the polarized control policy acts to

increase the spread (i.e. heterogeneity) in individual infectiousness,

ν , among the infectious cohort, whilst uniform partial control re-

duces it. 

We emphasise that control here is something that impacts in-

fectious individuals rather than susceptible individuals; specifi-

cally, under polarized control, the controlled individual becomes

infected, but then produces zero offspring. This definition follows

from our choice to model the outbreak as a branching process

where we only track the infectious cohort. As the uniform par-

tial control scenario scales the transmissibility of every individual

equally, its impact on the emergence of the invader follows directly

from the results in the previous section, and existing literature. In

contrast, however, the polarised control scenario requires a modi-

fication to the branching process and its outputs therefore do not

follow directly from preceding sections or existing literature. 

Assuming (for now) that the background susceptible population

is not affected by the application of control, for the uniform par-

tial and polarized control scenarios described above, the probabil-

ities of epidemic extinction q u and q p are respectively determined
ccording to the following equations: 

niform partial control : q u = 

(
1 + (1 − c) 

R 

i 
eff 

k 
(1 − q u ) 

)−k 

;

Polarized control : q p = c + (1 − c) 

(
1+ 

R 

i 
eff 

k 
(1 − q p ) 

)−k 

. 

(5)

n the uniform partial control case all individuals are impacted

qually and the extinction equation resembles Eq. (3) , only now

he effective reproduction number R i 
eff 

has been appropriately

caled according to the level of control. In the polarized case, a

xed proportion of infected individuals c are guaranteed to pro-

uce no subsequent infections (i.e., those branches of the infection

rocess become extinct) whilst the extinction probability of the re-

aining (1 − c) infected individuals remains unaltered. Since po-

arized control acts to increase population heterogeneity and uni-

orm partial control reduces it, we expect that q p > q u for all

 ∈ (0 , 1 − 1 /R i 
eff 

) , which, in fact, can be proven analytically ( Lloyd-

mith et al., 2005 ). 

For now, we assume that control measures are equally effective

gainst both the resident strain r and the invading strain i and that

hey are implemented coincident with the emergence of the invad-

ng strain. We relax these assumptions in the upcoming sections. 

In Fig. 2 we compare the extinction probabilities of the invad-

ng strain i under the uniform partial (solid) and polarized (dot-

ashed) control policies discussed above where, for reference, we

ave set R i 
0 

= 5 and R r 
0 

= 5 / 3 such that R i 
eff 

= 3 . Similar to be-

ore, in the uniform partial control case the effect of adding con-

rol is to rescale the extinction curves presented in Fig. 1 , i.e.,

 

i 
eff 

→ (1 − c) R i 
eff 

. For both control policies, we see that extinction

f the invading strain is guaranteed for c ≥ c crit = 1 − 1 /R i 
eff 

and

 

p > q u for all c ∈ (0 , 1 − 1 /R i 
eff 

) . That is, the polarized control pol-

cy, for which the extinction probability q increases almost linearly

ith c for c < c crit , outperforms the uniform partial control policy,

n terms of preventing the establishment of the invading strain. 

Note that applying control to the resident strain will cause the

usceptible background to shift. How quickly this occurs depends

pon how control is applied: if it were applied to all existing in-

ected individuals immediately, the background would likely shift

uite quickly, causing the branching process approximation for in-

ader success to be inaccurate. If control is instead applied only

o new infectious individuals, the susceptible background will shift

ore slowly, and the branching process approximation may remain

elatively accurate. However, as control coincident with the intro-

uction of the invading strain is somewhat unrealistic, we will not

nvestigate this in more detail. Instead, in the next section we con-

ider the more realistic scenario, where control precedes the intro-

uction of the invader. 

.2. Control timing 

In the previous section we assumed that control measures were

mplemented coincident with the emergence of the invading strain

 . There it was understood that any intervention measures applied

o the resident strain r will not have had sufficient time to sup-

ress the prevalence of the endemic strain r and replenish the sus-

eptible pool, S . We now consider an alternate (more realistic) sce-

ario in which control has been implemented over the long-term

o the endemic disease population prior to strain i ’s emergence,

.e., at t < 0. In this case we assume that control has been applied

ufficiently in advance that the population dynamics have had suf-

cient time to re-equilibrate. 

The major difference between the two scenarios described

bove is the number of susceptibles greeting the invading strain i :
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Fig. 3. Comparison of the probability of extinction, q , for a new invading strain 

entering an endemically infected population under a uniform partial (solid) and 

polarized (dot-dashed) control policy implemented prior to the emergence of the 

invading strain as a function of the level of control c and varying dispersion param- 

eter k . Here, we have set R i 0 = 5 and R r 0 = 5 / 3 which gives a critical control level 

c crit = 1 − R r 0 /R i 0 = 2 / 3 . In this figure we have assumed that control has been im- 

plemented prior to the emergence of the invading strain i and that it is equally 

effective against both strains. 
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ontrolling the resident strain r over the long term replenishes the

usceptible pool, S and, if the level of control is sufficient, even-

ually the resident strain is eliminated and the whole population

ecomes susceptible, i.e., S(t = 0) → N. Therefore, in the prior con-

rol scenario the invading strain i has an increased effective repro-

uction number which saturates upon elimination of the resident

train: 

 

i 
eff = 

R 

i 
0 

max [(1 − c) R 

r 
0 
, 1] 

. (6) 

ote that this expression does not yet take into account the effect

f control applied to the invading strain i itself; for that we need

o substitute (6) into the extinction probability Eq. (5) . In doing

o, we observe that for the uniform partial control case the factor

(1 − c) cancels and the extinction probability q u is independent

f the level of control c , at least until the resident strain becomes

xtinct at c > 1 − 1 /R r 0 . Below this threshold ( c < 1 − 1 /R r 0 ), the

ncrease in the susceptible population awaiting strain i (as a result

f controlling the resident strain r ) negates the effects of any

ntervention measures that are applied to the invading strain.

herefore, in this regime, uniform partial control is ineffective at

reventing the invasion of the novel strain (though we should

ertainly keep in mind that such measures would still reduce the

verall/combined disease prevalence, relative to a scenario with

o control). A similar cancellation does not occur for the polarized

ontrol case and given that q p > q u we anticipate that control will

lways be effective in this case. 

A plot of the extinction probability is given in Fig. 3 where

gain we compare the extinction probabilities of the invading

train i under the uniform partial (solid) and polarized (dot-

ashed) control policies discussed above. For ease of comparison

ith Fig. 2 , we have once again set R i 
0 

= 5 and R r 
0 

= 5 / 3 . Immedi-

tely we observe that for c < 1 − 1 /R r 0 uniform partial control mea-

ures have no impact on the invasion prospects of strain i . Not un-

il we enter the second regime, 1 − 1 /R r 
0 

≤ c < 1 − 1 /R i 
0 
, for which

he resident strain r has been eradicated prior to the emergence

f the invading strain i , does increasing the level of control c in-
rease the extinction probability of strain i . Conversely, polarized

ontrol is always effective for c > 0, and becomes increasingly so

or c > 1 − 1 /R r 
0 
. We note that differences in the im pact of uniform

artial versus polarised control observed here resemble those ob-

erved for a single strain being introduced into an infection-naive

opulation, for which polarised control is also known to be more

ffective ( Gomes et al., 2014 ). 

.3. Differential control 

In the preceding analysis we assumed that the control measure

eing implemented is equally effective against both the resident

train r and the invading strain i . A more general scenario to con-

ider is when the control measure that is implemented differen-

ially impacts the two strains. Indeed, if the invading strain is a

utant variant of the wild-type resident strain it is possible that

his new strain enjoys some level of resistance to active control

easures. Therefore, in this section we generalize the approach

aken above by assuming that for a fixed level of control c applied

o the background resident or endemic strain r , only a fractional

omponent αc — where 0 ≤ α ≤ 1 — inhibits the progress of the

nvading (possibly drug-resistant) strain. 

In this case the extinction Eqs. (5) given above generalize to 

niform partial control : q u = 

(
1 + (1 − αc) 

R i 
eff 

k 
(1 − q u ) 

)−k 

;

Polarized control : q p = αc + (1 − αc) 

(
1 + 

R i 
eff 

k 
(1 − q p ) 

)−k 

, 

(7) 

here we previously observed that the effective reproduction

umber in the simultaneous and prior control scenarios are given

espectively by 

imultaneous control : R 

i 
eff = 

R 

i 
0 

R 

r 
0 

;

Prior control : R 

i 
eff = 

R 

i 
0 

max [ (1 − c) R 

r 
0 
, 1 ] 

. (8) 

or the simultaneous control case (with R i 
eff 

= R i 
0 
/R r 0 ) the effect of

ifferential control is to simply rescale the control factor c → αc .

s a result, in this particular case, the extinction probabilities (for

he invading strain) calculated using Eqs. (7) and (8) will be qual-

tatively the same as that presented in Fig. 2 , with the x -axis c re-

uced to αc . Therefore, in this section we concentrate only on the

rior control scenario. 

If we substitute the expression for the effective reproduction

umber under the prior control scenario into (7) we obtain re-

ults that are both quantitatively and qualitatively distinct from

hose found previously (see Figs. 4 and 5 ). Of particular interest

s the combination of uniform partial control implemented prior

o the emergence of the invading strain in the sub-elimination

egime c ≤ 1 − 1 /R r 0 (i.e., below the critical level required to elimi-

ate strain r ). In this particular instance, the effective reproduction

umber in the presence of control becomes 

 

i 
eff ,c = 

(1 − αc) R 

i 
0 

(1 − c) R 

r 
0 

> 

R 

i 
0 

R 

r 
0 

for 0 < α, c < 1 

uch that increasing c will actually increase the effective reproduc-

ion number of strain i and enhance its invasion prospects relative

o the no control (c = 0) scenario. Similarly, although a closed an-

lytical expression cannot be found, it is also possible to show that

n analogous region of parameter space exists in which the appli-

ation of polarized control prior to the emergence of the invading

train leads to an enhanced probability of invasion, relative to the

o control scenario. 
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Fig. 4. Probability of extinction for the invading strain, q , under the differential 

uniform partial control scenario. (a) Extinction probability varies as a function of 

the resident control fraction c and the relative control fraction α. Here we have 

taken k = 1 , R i 0 = 5 and R r 0 = 5 / 3 , and assumed that control has been implemented 

prior to the emergence of the invading strain. For comparison, we have also drawn 

the reference plane for the extinction probability in the absence of control, i.e., for 

c = 0 . (b) A schematic describing the meaning of the different regimes that occur. 

The dashed line represents the critical threshold of the resident strain, i.e., for con- 

trol below this threshold, the resident may persist in the absence of the invader, for 

control above the threshold, the resident becomes extinct. The solid red line indi- 

cates the boundary of the region where control facilitates invader success relative 

to the control-free scenario. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Probability of extinction for the invading strain, q , under the differential po- 

larized control scenario. (a) Extinction probability varies as a function of the resi- 

dent control fraction c and the relative control fraction α. Here we have taken k = 1 , 

R i 0 = 5 and R r 0 = 5 / 3 and assumed that control has been implemented prior to the 

emergence of the invading strain. For comparison, we have also drawn the refer- 

ence plane for the extinction probability in the absence of control, i.e., for c = 0 . 

(b) A schematic describing the meaning of the different regimes that occur. The 

dashed line represents the critical threshold of the resident strain, i.e., for control 

below this threshold, the resident may persist in the absence of the invader, for 

control above the threshold, the resident becomes extinct. The solid red line indi- 

cates the boundary of the region where control facilitates invader success relative 

to the control-free scenario. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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An important corollary to these results is that under the differ-

ential control scenario, invasion can occur even when the invad-

ing strain is less transmissible than the resident strain, i.e., when

R i 
0 

< R r 0 it is still possible to obtain R i 
eff ,c 

> 1 . That is, while imple-

menting control can have substantial positive impacts in terms of

reducing the prevalence of a resident disease strain, it may facili-

tate the emergence of new, drug-resistant strains (that would not

have emerged in the absence of control). This is a relatively unsur-

prising result that is consistent with similar outcomes in a range of

different disease modelling scenarios e.g., ( Ballesteros et al., 2009;

Colijn and Cohen, 2015 ). 

To illustrate this finding we solve Eq. (7) using the prior con-

trol effective reproduction number given in (8) (see Figs. 4 and 5 ).

As a specific example we have taken k = 1 (corresponding to the

Exponentially-distributed infectious potential ν), but, we point out

that the behaviour is qualitatively the same for different values of
 — the difference being that the region for which control pro-

otes invasion by the invading strain increases as k increases. 

We observe that the region for which control enhances the in-

asion prospects of strain i is larger for the uniform partial control

ase compared to the polarized control scenario ( Figs. 4 and 5 ).

his observation follows from our earlier remark that q p > q u 

eaning that invasion is always less successful in the polarized

ase. However, even in the polarized control case we still observe

nhanced invasion probabilities provided the level of relative con-

rol α is sufficiently small, which in the event of multi- or even

xtensively-drug-resistant pathogens could well be the case. 

Finally, we reiterate that while control may in some cases

acilitate the establishment of an invader (that may not have es-

ablished in a control-free environment), the application of control

lways necessarily reduces overall disease prevalence. Moreover,

ote that, except in the case where the endemic disease has been
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radicated due to control efforts, introduction in competition with

n endemic background is always more challenging (from the

nfection’s perspective) than introduction into a naïve population.

ven in the extreme case in which the level of differential control

→ 0 + , the effective reproduction number R i 
eff ,c 

< R i 
0 
. Hence the

resence of an endemic strain always acts to protect the host

opulation from strain invasion provided there is some level of

ross-immunity. 

. Conclusion 

The number of phenotypically distinct strains of various

athogens circulating in the global population continues to rise,

ith new strains continually emerging. Due to the stochastic na-

ure of disease transmission, the successful emergence of a new

train is not certain, even when that strain is more fit than any

re-existing strains circulating in the population. Understanding

he relationships between relative strain transmissibility, popula-

ion heterogeneity, and the impact of different control measures

n strain emergence will enable more effective modelling of multi-

train disease dynamics in the face of challenges such as AMR. 

In this article we advanced previous work on disease emer-

ence in an infection-naïve population ( Lloyd-Smith et al., 2005 )

o address emergence of novel mutant strains competing against

esident endemic strains. This is a simple but powerful theory

hat can inform multi-strain modelling projects going forward (e.g.,

eehan et al. (2018) ; McBryde et al. (2017) ), including determin-

stic approximations, which can be applied once the outbreak has

uccessfully established ( Rebuli et al., 2017 ). We also demonstrated

hat the time at which control measures are implemented has a

ubstantial impact on the effectiveness of control for preventing

he emergence of new strains, and that this varied by the chosen

eans of control. Additionally, in the case of differential control,

here the invading strain shows some level of resistance to the

pplied control measure, we found regions of parameter space for

hich control was detrimental and increasing c increased the inva-

ion probability of the new strain. Hence, in accordance with pre-

ious findings, we showed that when control impacts the invading

train differently to the resident, this can (in some cases) facilitate

he emergence of the invading strain, relative to the control-free

ase. 

We observed that, for equal levels of effective coverage, polar-

zed control measures that completely neutralize a random fraction

f the population (e.g., perfect quarantine of a proportion of in-

ected individuals) consistently outperform imperfect control mea-

ures that partially control the entire population (e.g., vaccination

hat reduces, but does not eliminate, the susceptibility of all indi-

iduals). That is, random, polarized control provides greater protec-

ion against potential strain invasions. This is again consistent with

esults around invasion in naïve populations ( Lloyd-Smith et al.,

005 ). This could provide an important consideration for man-

gers choosing control strategies when concerns exist around AMR.

f course, more targeted control measures directed towards the

ost highly infectious members of the host population — so-called

super-spreaders’ — would outperform both the polarized and uni-

orm partial control scenarios considered here; however, identify-

ng such groups a priori , if possible, may be difficult in practice. 

For control timing, we considered two separate scenarios: im-

lementing the various control strategies (i.e., polarized, and uni-

orm partial) only upon emergence of the invading strain; and do-

ng so prior to its emergence, such that the population dynamics

ave had sufficient time to re-equilibrate. We note that the latter

ase, where control exists prior to the introduction of the invad-

ng strain, is likely to be more realistic, given the desire to con-

rol existing outbreaks. The difference between these two cases

s the number of susceptible individuals made available to the
ewly introduced invading strain. In the simultaneous case, the

usceptible pool remains depleted by the presence of the resident

train such that the invading strain is inhibited by both a reduced

(t = 0) = N/R r 
0 

and the added burden of control. In the prior sce-

ario, the susceptible population has been replenished by control

easures applied to the resident strain, S(t = 0) = N/ ((1 − c) R r 
0 
) .

n this latter case, the effects of uniform partial control on the in-

ading strain are negated by the increase in available susceptibles:

 

i 
eff ,c 

= R eff . Only once the level of control is sufficient to eradi-

ate the resident strain, i.e., c > 1 − 1 /R r 
0 

(and the susceptible pop-

lation then becomes the whole population, N ) does uniform par-

ial control start to impede the invasion prospects of the invading

train. Conversely, implementing a random, polarized control strat-

gy is always beneficial provided the control measure is equally

ffective against both the resident and invading strains. 

One limitation of our analysis is that we assume that the sus-

eptible individuals are the same, and mix homogeneously, so that

hey are equally likely to become infected. If this were not the

ase, the resident infection would likely impact which suscepti-

les are available to the invader, requiring a more complex mod-

lling framework. For example, given that both infection potential

nd susceptibility are functions of the number of contacts an in-

ividual experiences, these quantities may be naturally correlated.

eventhal et al. (2015) approach this problem by imposing an ex-

licit contact-network structure on the study population, such that

eterogeneity in susceptibility was directly linked to the hetero-

eneity in infectiousness through the (fixed) number of contacts

hared by each individual. In this context, invasion events were

ound to be less likely because potential ‘super-spreading’ hosts (or

ubs in the network) were often already infected with the resi-

ent strain meaning they were unable to perpetuate the spread of

he invading strain, whilst simultaneously providing protection to

usceptible satellite nodes. Given these findings, it would be in-

eresting to consider more general correlation structures between

usceptibility and infectiousness and their effect on strain invasion

otential in a generalized branching process framework. 

We also assume perfect cross-immunity holds between the res-

dent and invading strains and thereby neglect the possibility of re-

lacement infection or within-host co-infection — we do however,

till allow for subsequent infection with an alternate strain follow-

ng recovery. This assumption may be valid for particular infectious

athogens, e.g., measles, varicella, for which infection with one

train precludes coincident infection with any other, but this prop-

rty does not hold in general. For instance, replacement infection

r co-infection with e.g., influenza, streptococcus, staphylococcus

s known to occur. As a result of our perfect cross-immunity as-

umption, strain invasion (and eventual replacement) or strain ex-

inction become the only two possible outcomes of our simulation

cenario. However, relaxing this assumption allows for more com-

lex dynamics including strain coexistence ( Spicknall et al., 2013 ). 

Throughout our analysis, we considered the potential for het-

rogeneous individual reproductive capacity (i.e., the capacity for

super-spreaders’) among members of the host population. While

his does not influence the impacts of control qualitatively, we em-

hasize that under the branching process approximation it does

mpact how likely the invading strain is to establish. In particu-

ar, invaders are less likely to establish when individual reproduc-

ive capacities are more highly dispersed. However, we note that

his heterogeneity also has a subtler effect: the error between sim-

lated epidemic results and the branching process approximation

aries in both magnitude, and direction, with k ( Fig. 9 ). One clear

ossibility is that if a ‘super-spreader’ individual emerges early in

n outbreak, it may allow a strain to establish itself when it other-

ise would not have. In addition, since the heterogeneity also in-

uences the resident strain, increased heterogeneity both enables

he natural extinction of the resident strain ( Fig. 10 ), and more
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Fig. 6. (Top) Model schematic for simulated example model. Susceptible individuals 

become infectious according to a Poisson process; infectious individuals remain in- 

fected for exactly one time unit, deterministically. Recovered individuals have their 

immunity wane and become susceptible according to a Poisson process. (Bottom) 

Example simulation of this process, with N = 10 0 0 , k = 1 , γ = 1 , R r 0 = 2 , R i 0 = 4 . The 

simulation is initialised in an approximate equilibrium state for the resident dis- 

ease, and a single infectious individual of the invader strain is introduced at t = 1 . 

The simulation ends when the resident strain is extinct. 
generally variation of the initial susceptible proportion faced by the

invader away from N/R r 0 . 

Applying a branching process approximation for the emergence

of a new strain in the presence of an endemic background, rather

than into a naïve population, requires care. Our simulation study

determined that the approximation was quite robust even for rela-

tively small populations (e.g., N ≥ 500). However, there was some

variation due to different parameter choices at smaller population

sizes. In particular, accuracy varied when heterogeneity in individ-

ual reproductive capacity was high, and when parameter choices

caused the endemic disease to be at risk of natural extinction

(even without the influence of the invader). We also emphasize

that the branching process approximation is limited in that it can

only quantify the probability of initial strain extinction: There is

likely some additional probability of subsequent fade-out due to

depletion of susceptibles (e.g., sensu Ballard et al. (2016) ). A sepa-

rate analysis would be necessary to investigate this phenomenon. 

One key assumption we make here is that, in effect, we re-

quire that (functional) mutations occur sufficiently rarely that the

new strain will either establish, or become extinct, before a repeat

mutation can occur. If instead there was a possible ancestral re-

lationship between the resident strain and the invader, where the

resident effectively fuels the invading cohort with continual rein-

forcements, invasion dynamics would likely be different. It would

be interesting then to re-evaluate our results with a coupling be-

tween the two strains: our expectation is that with a perpetual

supply of reinforcements, replacement with any fitter (i.e., R i 
0 

> R r 0 )

variants is guaranteed — it just a question of when. Further, as-

suming an ancestral relationship between the competing strains

we could also model multiple epochs (i.e., we would not terminate

the simulation after a single replacement event has occurred) and

follow the evolution of the pathogen (see also ( Yates et al., 2006 )).

These considerations are left as avenues for future research. 

The results of this analysis point to the role of endemic infec-

tion as an immunizing agent and its ability to impede the emer-

gence of new exotic strains. In addition to population-wide effects,

this has important implications at the individual level, where the

use of broad-spectrum antibiotics can inadvertently eliminate col-

onizing bacterial infections (e.g., Staphylococcus aureus ), and thus

further highlights the importance of antibiotic stewardship. Per-

haps the most critical outcome of this work is the potential for the

invading strain to become established even when it is less trans-

missible than the resident due to differential control. The emer-

gence of mutant strains in the presence of endemic backgrounds is

of substantial concern in many disease settings (particularly e.g.,

Tuberculosis), and the impact of differential control highlighted

here should be considered in any future control effort s as well as

effort s to model multi-strain dynamics in these systems. 
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ppendix A. Simulation study 

To determine conditions under which the branching process ap-

roximation for invader establishment success could be confidently

pplied, we performed a simulation study. 

We considered a relatively simple stochastic epidemic model

 Fig. 6 ), in which each of the N individuals in the population are

ither: susceptible ( S ); infectious with the resident strain ( I r ), or

he invader ( I i ); or recovered ( R ). Transitions in this model are

omewhat unconventional. We assume the infectious duration of

ach individual is constant , rather than random, with value 1/ γ
and for simplicity we set γ = 1 , without loss of generality). Each

nfected individual j (when infected) has their own individual

eproductive capacity, ν j , Gamma distributed with mean R s 
0 

and

ispersion parameter k , where s is the strain they are infected

ith. Infection events occur according to a Poisson process, with

ate S 
N−1 

∑ 

j∈ infected 

ν j , i.e., where one would normally expect a

I transmission term when infection rates are homogeneous, we

nstead have �j ∈ infected ν j . The combination of the deterministic

nfectious period and the Gamma-distributed individual repro-

uctive capacity results in this situation being equivalent to that

onsidered throughout the manuscript. Recovered individuals have

https://doi.org/10.13039/501100000923
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Data : N, k, R r 0 , R 
i 
0 , η, γ = 1 , T max 

Result : Produces an exact simulation of the epidemic process. 
initialise: t = 0 ; 

S(0) = floor ( 1 
R r 

0 
N) ; 

R (0) = floor ( 
(1 − 1 

R r 
0 

) 

(1+ ηγ ) 
N) ; 

I r (0) = N − S(0) − R (0) ; 
I i (0) = 0 ; 

U 

r = queue () ; V 

r = queue () ; U 

i = queue () ; V 

i = queue () ; 
for j ∈ 1 , . . . , I r (0) do 

r r 
j 
∼ Uniform (0 , 1) ; 

push (U 

r , r r 
j 
) ; 

νr 
j 
∼ Gamma (γ R r 0 /k, k ) ; 

push (V 

r , νr 
j 
) ; 

end 

U 

r ← sort (U 

r ) ; // Existing infectious individuals at time 
0 must recover between time 0 and 1, uniformly. 
push (U 

i , inf ) ; 

push (V 

i , 0) ; 
while t < T max do 

λtotal = 

S(t) 
N−1 

sum (V 

r ) + 

S(t) 
N−1 

sum (V 

i ) + ηR (t) ; 

τc ∼ Exp (λtotal ) ; 

if t + τc < min ( peek (U 

r ) , peek (U 

i )) then 

// Infection or waning comes first 
u ∼ Uniform (0 , 1) ; 

if u < ( S(t) 
N−1 

sum (V 

r ) + 

S(t) 
N−1 

sum (V 

i )) /λtotal then 

// Infection 
if u < ( S(t) 

N−1 
sum (V 

r )) /λtotal then 

I r (t + τc ) = I r (t) + 1 ; 
S(t + τc ) = S(t) − 1 ; 
push (U 

r , t + τc + 1) ; 
νr 

new 

∼ Gamma (γ R r 0 /k, k ) ; 
push (V 

r , νr 
new 

) ; 
else 

I i (t + τc ) = I i (t) + 1 ; 
S(t + τc ) = S(t) − 1 ; 

push (U 

i , t + τc + 1) ; 

ν i 
new 

∼ Gamma (γ R i 0 /k, k ) ; 

push (V 

i , ν i 
new 

) ; 
end 

else 
// Waning 
R (t + τc ) = R (t) − 1 ; 
S(t + τc ) = S(t) + 1 ; 

end 

t = t + τc ; 

else 
// Recovery comes first 
if peek (U 

r ) < peek (U 

i ) then 

t new 

= pop (U 

r ) ; 
pop (V 

r ) ; 
I r (t new 

) = I r (t) − 1 ; 
R (t new 

) = R (t) + 1 ; 
t = t new 

; 

else 
t new 

= pop (U 

i ) ; 

pop (V 

i ) ; 
I i (t new 

) = I i (t) − 1 ; 
R (t new 

) = R (t) + 1 ; 
t = t new 

; 

end 

end 

end 

Algorithm 1: Algorithm to simulate the full epidemic pro- 

cess. Note that queue () creates an empty queue data structure, 

push (X , y ) adds element y to the end of queue X , peek (X ) 

looks at the first value in X (without removing it), and pop (X ) 

removes the first value in X , and returns it. For simplicity we do 

not include initialising the first I i individual in this description; it 

is introduced at time 1, with a transition from a susceptible in- 

dividual, and its death time and individual reproductive capacity 

replace the first element in U 

i and V 

i , respectively. 
aning immunity, occurring according to a Poisson process with

ate ηR . 

While this process is not Markov, it can nonetheless be simu-

ated through a small modification of the standard Doob-Gillespie

tochastic simulation algorithm ( Algorithm 1 ). The key step is to

ecord the recovery times r j and individual reproductive capacities

 ν j ) of each infected individual in a first-in-first-out (FIFO) queue

ata structure. Then, rather than generating the time of the next

vent as in a standard Markov process, we generate a candidate

ime for the next infection or recovery event, and check if it is due

o occur before the next recovery that is due (i.e., the first r j in the

ueue). If the candidate infection time is before the next recovery,

nfection occurs, otherwise the recovery occurs. 

For consistency with the situation described in the main arti-

le, we initialise the simulations at t = 0 in an approximate equi-

ibrium state for I r (i.e., such that the average transition rates into

nd out of each compartment are approximately equal; effectively

 moment-closure approximation for the mean of the process), and

ntroduce a single I i at t = 1 . Full details appear in Algorithm 1 . An

xample realisation of this process appears in Fig. 6 . 

Simulations were produced for: 

• N ranging between 100 and 10 0 0. 
• k taking values 0.1, 0.3, 1, 3, and 10 0 0 (as in the main

manuscript, but with 10 0 0 in place of ∞ ). 
• R r 

0 
taking values 2, 3, 4 and 10. 

• R i 
eff

taking values 1, 1.1, 1.5, 2, 3, 4 and 5. 

At least 10,0 0 0 simulations were produced for each combina-

ion of parameters. η = 1 / 10 was used throughout. Simulations

ere terminated at the later of time t = 5 , and the time when one

r other of the strains became extinct. The t = 5 minimum was es-

ablished as in some cases (particularly with small N ) the resident

train could become extinct with little influence from the invading

train, with the invading strain becoming extinct shortly after – in

hich case the invading strain should not be recorded as success-

ully becoming established. 

Note that we do not consider extinction of the invader at

 later time, e.g., epidemic fade out in the first trough (as in

allard et al. (2016) ), unless that fade out occurs within the t ≤ 5

nterval. 

1. Simulation study results 

When the simulated population size was small, there was sub-

tantial error between simulated establishment success of the in-

ading strain, and the branching process approximation; however,

s population size increased beyond 500, the error between these

uantities reduced ( Fig. 8 ). This behaviour was robust to variations

n k , and to R r 
0 

( Fig. 7 ). 

The most substantial difference was that, particularly at smaller

opulation sizes, the invader had some chance to become es-

ablished even when R i 
eff

was 1.0; and this was more likely for

ore heterogeneous individual reproductive capacity distributions.

ne possible explanation for this is that the empirical distribu-

ion of transmissibility in a (small) finite population may not

atch the generating distribution (and, in particular, the average

ransmissibility of the invader may be substantially greater than

xpected). Intuitively, this could occur when the initial invading

ndividual was a ‘superspreader’ (i.e., an individual with high

ndividual reproductive capacity). Alternatively, the resident strain

ould fluctuate substantially from the average quasi-stationary

ehavior (even to the point of being at risk of extinction without

he influence of the invader), which would provide windows of

pportunity for the invader to establish. Similar phenomena were

bserved by Humplik et al. (2014) , wherein the resident strain
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Fig. 7. Comparison between the branching process approximation for invader establishement success, and empirical invader establishment success in simulations of a full 

epidemic process. The process was simulated for a range of values of k , R r 0 , and R i 
eff

(i.e., R i 0 /R r 0 ), as the total population size, N varied from 100 to 1,0 0 0. The red line 

indicates the branching process approximation solution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

Fig. 8. Error between the branching process estimate of invader establishment probability, and establishment success in simulations of size N . R r 0 is fixed at 2.0 in these 

simulations. Error is calculated as 
∑ 5 

R 
eff

=1 ‖ ̂ q s (R eff) − q (R eff) ‖ , where ˆ q s (R eff) is the proportion of simulations in which establishment was successful at the given R eff level. 
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could become naturally extinct within the lifetime of the invading

strain, even without the heterogeneity in reproductive capacity

considered here. 

More broadly, the interactions between N, k , the reproductive

capacity of the resident strain, and the effective reproductive ca-

pacity of the invader have complex impacts on the correspondence

between the branching process approximation and simulation re-

sults ( Fig. 8 ). For intuition around the accuracy of the branching

process approximation, we can consider two key drivers. 

• The size of the population of susceptibles available to the invad-

ing strain, early in its outbreak. A remark of Ball and Don-

nelly (1995) suggests that, in the case they consider, the epi-

demic grows like a branching process until approximately N 

1/2 

of individuals in the population are infected. While the process

we consider is not the same, we can use this as a heuristic.

Rather than the full population, we are interested in the pop-

ulation of susceptible individuals, given the circulation of the

endemic disease in the population. We denote this S 0, and note

that it is approximately N 
R r 

. We observe that for small values

0 
of N , the growth of the process can only be approximated by

a branching process up to very small outbreaks, e.g., until 7 or

fewer infected individuals when N = 100 . 
• The capacity of the resident strain (or the invader) to persist in the

population. In small populations, it is possible for the resident

strain itself to become extinct quickly, due to the stochastic na-

ture of disease transmission. As heterogeneity in individual re-

productive capacity increases, this becomes more likely to oc-

cur, particularly at smaller values of R 0 ( Fig. 10 ). As such, when

the invader is introduced, it becomes impossible to distinguish

success of the invader strain from natural extinction of the res-

ident; or failure of the invader from successful establishment

followed quickly by its natural extinction. 

In short, the branching process approximation is definitely to

e avoided for small population sizes, but can produce reasonable

esults as population size increases (particularly under conditions

hen the endemic disease is capable of persisting for substantial

ime periods). We advise caution, and, where necessary, verifying

esults through simulation. 
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Fig. 9. The error: ( (1 − q ) − proportion of sims in which the invader becomes established) at each individual parameter choice, by the total population size N . This shows 

that, when R i 
eff

is 1.0, or k is 0.1, the branching process approximation underestimates the success of the invader; but when R i 
eff

is large, its success is overestimated, 

particularly when R r 0 is small. 

Fig. 10. Simulated extinction times for the endemic disease process (initiated in equilibrium at time 0), in the absence of the invader strain. Note that the simulation was 

truncated at time t = 100 , and so outbreaks that persisted at that time, were assigned that extinction time. Lines show median values, error bars indicate 25% and 75% 

quantiles. 
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